Sol-gel derived materials as substrates for neuronal differentiation: effects of surface features and protein conformation{

نویسندگان

  • Sabrina S. Jedlicka
  • Janice L. McKenzie
  • Silas J. Leavesley
  • Kenneth M. Little
  • Thomas J. Webster
  • J. Paul Robinson
  • David E. Nivens
  • Jenna L. Rickus
چکیده

This work demonstrates the ability of sol-gel derived materials to support the differentiation of neuronal cells, and investigates the physiochemical interactions between the surface and extracellular matrix proteins as a mediator of the effects of surface features on differentiation. We have applied fluorescence resonance energy transfer (FRET) spectroscopy to study the conformational changes of human serum fibronectin, a critical extracellular cell adhesion protein, after adsorption onto native and poly-L-lysine doped sol-gel derived silica thin films and bulk materials. The global conformation of fibronectin varied dramatically between native and organically modified materials and most interestingly between thin films and bulk materials of the same chemistry. A comparison of the surface topography of thin films and bulk materials by atomic force microscopy reveals that films of native silica have surface features less than the AFM tip size (,25 nm) while bulk materials of the same precursor chemistry have features ranging from 50–100 nm in size. Fibronectin assumed an inactive, globular, solution-like state on the larger feature size bulk gels and an active, fully extended fibrillar-like state on the smaller feature size films. Neither native nor PLL-doped bulk materials could support cell growth or neuronal differentiation of PC12 cells, in stark contrast to the thin films, which supported a robust neuronal phenotype. Morphological analysis and expression levels of the neuronal proteins b-tubulin and neurofilament, in addition to the FRET data, indicate that the effects of surface chemistry on fibronectin conformation, cellular adhesion, and differentiation are dependent upon the surface topography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of UV irradiation treated polycarbonate substrates on properties of nanocrystalline TiO2 sol-gel derived thin films

In this study, in order to achieve effective coating of the homogeneous titanium dioxide (TiO2) thin film, UV irradiation pre-treatment was carried out to activate PC surfaces before coating. Sol-gel-based nanocrystalline TiO2 thin films were prepared by employing tetrabutyl-titanate as a precursor. Nanocrystalline TiO2 thin films were deposited by sol-gel spin coating on the treated substrates...

متن کامل

Pore surface fractal dimension of sol-gel derived nanoporous SiO2-ZrO2 membrane

In this work, SiO2 –ZrO2 mixed oxides was prepared by the polymeric sol–gel route. The characterization of pore structure, which determines the permeation process of membrane, is of great importance. So far, most investigations have focused on such pore structure as specific surface area and pore size distribution, but the surface fractal, the important parameter reflecting the roughness of por...

متن کامل

Some studies on the surface modification of sol-gel derived hydrophilic Silica nanoparticles

In the present investigation surface modification of silica nanoparticles by alumina was carried out by sol-gel process. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) confirmed the synthesis of silica and the surface modification as alumina is anchored to silica surface. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) investigation...

متن کامل

Some studies on the surface modification of sol-gel derived hydrophilic Silica nanoparticles

In the present investigation surface modification of silica nanoparticles by alumina was carried out by sol-gel process. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) confirmed the synthesis of silica and the surface modification as alumina is anchored to silica surface. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) investigation...

متن کامل

Selenium nanoparticles inclusion into chitosan hydrogels act as a chemical inducer for differentiation of PC12 cells into neuronal cells

Background and Objective: Biomaterials and nanomaterials have generated a great opportunity in regenerative medicine. Neurological disorders can result in permanent and severe derangement in motor and sensory functions. This study was conducted to examine the effects of selenium nanoparticles (Se NPs) as a chemical inducer for differentiation of PC12 cells into sympathetic-like neurons characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006